A functional polymorphism in the reduced folate carrier gene and DNA hypomethylation in mothers of children with autism.

James SJ, Melnyk S, Jernigan S, Pavliv O, Trusty T, Lehman S, Seidel L, Gaylor DW, Cleves MA. Am J Med Genet B Neuropsychiatr Genet. 2010 Sep;153B(6):1209-20.  Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA. jamesjill@uams.edu


The biologic basis of autism is complex and is thought to involve multiple and variable gene-environment interactions. While the logical focus has been on the affected child, the impact of maternal genetics on intrauterine microenvironment during pivotal developmental windows could be substantial. Folate-dependent one carbon metabolism is a highly polymorphic pathway that regulates the distribution of one-carbon derivatives between DNA synthesis (proliferation) and DNA methylation (cell-specific gene expression and differentiation). These pathways are essential to support the programmed shifts between proliferation and differentiation during embryogenesis and organogenesis. Maternal genetic variants that compromise intrauterine availability of folate derivatives could alter fetal cell trajectories and disrupt normal neurodevelopment. In this investigation, the frequency of common functional polymorphisms in the folate pathway was investigated in a large population-based sample of autism case-parent triads. In case-control analysis, a significant increase in the reduced folate carrier (RFC1) G allele frequency was found among case mothers, but not among fathers or affected children. Subsequent log linear analysis of the RFC1 A80G genotype within family trios revealed that the maternal G allele was associated with a significant increase in risk of autism whereas the inherited genotype of the child was not. Further, maternal DNA from the autism mothers was found to be significantly hypomethylated relative to reference control DNA. Metabolic profiling indicated that plasma homocysteine, adenosine, and S-adenosylhomocyteine were significantly elevated among autism mothers consistent with reduced methylation capacity and DNA hypomethylation. Together, these results suggest that the maternal genetics/epigenetics may influence fetal predisposition to autism.

Global methylation profiling of lymphoblastoid cell lines reveals epigenetic contributions to autism spectrum disorders and a novel autism candidate gene, RORA, whose protein product is reduced in autistic brain.

Nguyen A, Rauch TA, Pfeifer GP, Hu VW.
FASEB J. 2010 Apr 7. [Epub ahead of print]
Autism is currently considered a multigene disorder with epigenetic influences. To investigate the contribution of DNA methylation to autism spectrum disorders, we have recently completed large-scale methylation profiling by CpG island microarray analysis of lymphoblastoid cell lines derived from monozygotic twins discordant for diagnosis of autism and their nonautistic siblings. Methylation profiling revealed many candidate genes differentially methylated between discordant MZ twins as well as between both twins and nonautistic siblings. Bioinformatics analysis of the differentially methylated genes demonstrated enrichment for high-level functions including gene transcription, nervous system development, cell death/survival, and other biological processes implicated in autism. The methylation status of 2 of these candidate genes, BCL-2 and retinoic acid-related orphan receptor alpha (RORA), was further confirmed by bisulfite sequencing and methylation-specific PCR, respectively. Immunohistochemical analyses of tissue arrays containing slices of the cerebellum and frontal cortex of autistic and age- and sex-matched control subjects revealed decreased expression of RORA and BCL-2 proteins in the autistic brain. Our data thus confirm the role of epigenetic regulation of gene expression via differential DNA methylation in idiopathic autism, and furthermore link molecular changes in a peripheral cell model with brain pathobiology in autism.-Nguyen, A., Rauch, T. A., Pfeifer, G. P., Hu, V. W. Global methylation profiling of lymphoblastoid cell lines reveals epigenetic contributions to autism spectrum disorders and a novel autism candidate gene, RORA, whose protein product is reduced in autistic brain.

Folate and methionine metabolism in autism: a systematic review

Main PA, Angley MT, Thomas P, O'Doherty CE, Fenech M.  Am J Clin Nutr.Am J Clin Nutr. 2010 Oct;92(4):1001.

Sansom Institute, University of South Australia, Adelaide, Australia.


BACKGROUND: Autism is a complex neurodevelopmental disorder that is increasingly being recognized as a public health issue. Recent evidence has emerged that children with autism may have altered folate or methionine metabolism, which suggests the folate-methionine cycle may play a key role in the etiology of autism.

OBJECTIVE: The objective was to conduct a systematic review to examine the evidence for the involvement of alterations in folate-methionine metabolism in the etiology of autism.

DESIGN: A systematic literature review was conducted of studies reporting data for metabolites, interventions, or genes of the folate-methionine pathway in autism. Eighteen studies met the inclusion criteria, 17 of which provided data on metabolites, 5 on interventions, and 6 on genes and their related polymorphisms.

RESULTS: The findings of the review were conflicting. The variance in results can be attributed to heterogeneity between subjects with autism, sampling issues, and the wide range of analytic techniques used. Most genetic studies were inadequately powered to provide more than an indication of likely genetic relations.

CONCLUSIONS: The review concluded that further research is required with appropriately standardized and adequately powered study designs before any definitive conclusions can be made about the role for a dysfunctional folate-methionine pathway in the etiology of autism. There is also a need to determine whether functional benefits occur when correcting apparent deficits in folate-methionine metabolism in children with autism.

Efficacy of methylcobalamin and folinic acid treatment on glutathione redox status in children with autism.

James SJ, Melnyk S, Fuchs G, Reid T, Jernigan S, Pavliv O, Hubanks A, Gaylor DW

Am J Clin Nutr. 2009 Jan;89(1):425-30. Epub 2008 Dec 3

Department of Pediatrics and Biostatistics, University of Arkansas for Medical Sciences, Arkansas Children's Hospital Research Institute, Little Rock, AR 72202, USA. jamesjill@uams.edu


BACKGROUND: Metabolic abnormalities and targeted treatment trials have been reported for several neurobehavioral disorders but are relatively understudied in autism.

OBJECTIVE: The objective of this study was to determine whether or not treatment with the metabolic precursors, methylcobalamin and folinic acid, would improve plasma concentrations of transmethylation/transsulfuration metabolites and glutathione redox status in autistic children.

DESIGN: In an open-label trial, 40 autistic children were treated with 75 microg/kg methylcobalamin (2 times/wk) and 400 microg folinic acid (2 times/d) for 3 mo. Metabolites in the transmethylation/transsulfuration pathway were measured before and after treatment and compared with values measured in age-matched control children.

RESULTS: The results indicated that pretreatment metabolite concentrations in autistic children were significantly different from values in the control children. The 3-mo intervention resulted in significant increases in cysteine, cysteinylglycine, and glutathione concentrations (P < 0.001). The oxidized disulfide form of glutathione was decreased and the glutathione redox ratio increased after treatment (P < 0.008). Although mean metabolite concentrations were improved significantly after intervention, they remained below those in unaffected control children.

CONCLUSION: The significant improvements observed in transmethylation metabolites and glutathione redox status after treatment suggest that targeted nutritional intervention with methylcobalamin and folinic acid may be of clinical benefit in some children who have autism. This trial was registered at (clinicaltrials.gov) as NCT00692315.